How to Understand Any Physics Equation

Case Study: Newton's Second Law

By SpideyPhysics

1. Name the Equation

Knowing what you're looking at helps your brain categorize information. $\mathbf{F} = \mathbf{ma} \rightarrow Newton's \ Second \ Law$

2. Define Every Symbol (with Units)

Write what each letter means and include its standard unit:

- $\mathbf{F} = Force$
- $\mathbf{m} = \text{Mass}$
- $\mathbf{a} = \text{Acceleration}$

Tip: Units help anchor understanding — don't skip them.

3. Rewrite in Equivalent Forms

Show how the equation links to calculus and related forms:

- $F = m \cdot \frac{dv}{dt}$ $F = m \cdot \frac{d^2x}{dt^2}$ (acceleration as derivative of velocity)
- (acceleration as second derivative of position)

4. Recognize Functions of Time

Position, velocity, and acceleration are often functions of time:

- x(t) = position
- v(t) = velocity
- a(t) = acceleration

Understanding this helps when solving motion problems.

5. Expand the Left Side (Net Force)

When multiple forces act: $\sum F = ma$. Examples:

- Tension Weight = ma
- Thrust Drag Gravity = ma

[Newtons, N] [kilograms, kg] $[\text{meters/second}^2, \text{m/s}^2]$

6. Specify the Type of Force

Recognize the source of force:

- Friction: $F_k = \mu N$
- Spring: F = -kx
- Electric: F = qE

- Gravity: F = mg
- Universal Gravitation: $F = \frac{Gm_1m_2}{r^2}$

Apply to Any Equation

Next time you see an equation like V = IR or $W = Fd\cos\theta$, ask:

- What does it describe?
- What do the symbols mean?
- Are there alternate forms?
- Are the variables time-dependent?

Key Takeaway

Don't just memorize — deconstruct. Every equation is a story. Learn to read it.

Want more study guides? Join the SpideyPhysics mailing list! https://yourformlink.com Download future guides at spideyphysics.github.io

Try It Yourself!

Apply the same process to a new equation

Equation: $W = Fd\cos\theta$

1. Name the Equation

2. Define Every Symbol (with Units)

- *W* =
- F =
- *d* =
- θ =
- 3. Rewrite in Equivalent Forms
- 4. Recognize Functions of Time
- 5. Expand the Left Side
- 6. Specify the Type of Force

Bonus: Apply the same method to V = IR or $KE = \frac{1}{2}mv^2$ You're now thinking like a physicist!

Created with love by SpideyPhysics — for more, visit The SpideyPhysics Website